4,774 research outputs found

    Characteristics of optical multi-peak solitons induced by higher-order effects in an erbium-doped fiber system

    Full text link
    We study multi-peak solitons \textit{on a plane-wave background} in an erbium-doped fiber system with some higher-order effects, which is governed by a coupled Hirota and Maxwel-Bloch (H-MB) model. The important characteristics of multi-peak solitons induced by the higher-order effects, such as the velocity changes, localization or periodicity attenuation, and state transitions, are revealed in detail. In particular, our results demonstrate explicitly that a multi-peak soliton can be converted to an anti-dark soliton when the periodicity vanishes; on the other hand, a multi-peak soliton is transformed to a periodic wave when the localization vanishes. Numerical simulations are performed to confirm the propagation stability of multi-peak solitons riding on a plane-wave background. Finally, we compare and discuss the similarity and difference of multi-peak solitons in special degenerate cases of the H-MB system with general existence conditions.Comment: 7 pages, 4 figure

    Small polaron with generic open boundary conditions revisit: exact solution via the off-diagonal Bethe ansatz

    Get PDF
    The small polaron, an one-dimensional lattice model of interacting spinless fermions, with generic non-diagonal boundary terms is studied by the off-diagonal Bethe ansatz method. The presence of the Grassmann valued non-diagonal boundary fields gives rise to a typical U(1)U(1)-symmetry-broken fermionic model. The exact spectra of the Hamiltonian and the associated Bethe ansatz equations are derived by constructing an inhomogeneous TQT-Q relation.Comment: 12 pages, no figure, published versio

    Dissociation Cross Sections of Large-Momentum Charmonia with Light Mesons in Hadronic Matter

    Full text link
    Momenta of charmonia created in Pb-Pb collisions at the Large Hadron Collider are so large that three or more mesons may be produced when the charmonia collide with light mesons in hadronic matter. We study the meson-charmonium collision in a mechanism where the collision produces two quarks and two antiquarks, the charm quark then fragmenting into charmed mesons, and the other three constituents as well as quarks and antiquarks created from vacuum give rise to two or more mesons. The absolute square of the transition amplitude for the production of two quarks and two antiquarks is derived from the SS-matrix element, and cross-section formulas are derived from the absolute square of the transition amplitude and charm-quark fragmentation functions. With a temperature-dependent quark potential, we calculate unpolarized cross sections for inclusive D+D^+, D0D^0, Ds+D^+_s, or D+D^{*+} production in scattering of charmonia by π\pi, ρ\rho, KK, or KK^\ast mesons. At low center-of-mass energies of the charmonium and the light meson, the cross sections are very small. At high energies the cross sections have obvious temperature dependence, and are comparable to peak cross sections of two-to-two meson-charmonium reactions.Comment: 47 pages, 12 figures, 14 table
    corecore